How an instrument is defined?

The basic component of an instrument is a region. An instrument then, is defined by one or more regions. Multiple regions can be arranged in a group. Groups

allow entering common parameters for multiple regions.

A region can include three main components: the definition for a sample, a set of input controls and a set of performance parameters.

Sample

The sample opcode defines which sample file will be played when the region is defined to play.

If a sample opcode is not present in the region, the region will play the sample defined in the last <group>. If there's no previous group defined, or if

the previous group doesn't specify a sample opcode, the region will be ignored.

Input Controls

Input controls define when the sample defined in a region will play, based in real-world controller values and/or internally calculated values.

Real-world controllers are the elements that players, musicians or composers actually use to play music. Internal values are calculated by the player, like

sequence counters and random generators.

The sfz format relies in the standard Musical Instruments Digital Interface (MIDI) specification for all input controls. Most available performance controllers

implement MIDI, and it's still the dominating specification for software audio sequencers in all platforms.

Keyboard controllers are the most significant example of an Input Controls generator. Other generators could be MIDI guitars and string instruments, wind

controllers, drum and percussion controllers. With individual differences, they all generate a common set of messages defined in the MIDI specification.

A set of input controls then, are the combination of a played MIDI note with its velocity, continuous controllers, pitch bend, channel and polyphonic aftertouch,

etc.

When a particular set of input controls matches the definition for a region, the sample specified in that region plays, using a particular set of performance

parameters also specified in the region.

Inside the definition file, a region starts with the <region> header. A region is defined between two <region> headers, or between a <region> header and

a <group> header, or between a <region> header and the end of the file,.

Following the <region> header one or more opcodes can be defined. The opcodes are special keywords which instruct the player on what, when and how to play

a sample.

Opcodes within a region can appear in any order, and they have to be separated by one or more spaces or tabulation controls. Opcodes can appear in separated

lines within a region.

Opcodes and assigned opcode values are separated by the equal to sign (=), without spaces between the opcode and the sign. For instance:

sample=trombone_a4_ff.wav

sample=cello_a5_pp first take.wav

are valid examples, while:

sample = cello_a4_pp.wav

Is not (note the spaces at the sides of the = sign).

Input Controls and Performance Parameters opcodes are optional, so they might not be present in the definition file. An 'expectable' default value for each

parameter is pre-defined, and will be used if there's no definition.

Example region definitions:

<region> sample=440.wav

This region definition instructs the player to play the sample file '440.wav' for the whole keyboard range.

<region> lokey=64 hikey=67 sample=440.wav

This region features a very basic set of input parameters (lokey and hikey, which represent the low and high MIDI notes in the keyboard), and the sample

definition.

This instructs the player to play the sample '440.wav', if a key in the 64-67 range is played.

It is very important to note that all Input Controls defined in a region act using the AND boolean operator. Consequently, all conditions must be matched

for the region to play. For instance:

<region> lokey=64 hikey=67 lovel=0 hivel=34 locc1=0 hicc1=40 sample=440.wav

This region definition instructs the player to play the sample '440.wav' if there is an incoming note event in the 64-67 range AND the note has a velocity

in the 0~34 range AND last modulation wheel (cc1) message was in the 0~40 range.

Performance parameters

The Performance Parameters define how the sample specified will play, once the region is defined to play.

A simple example of a Performance Parameter is volume. It defines how loud the sample will be played when the region plays.

Groups

As previously stated, groups allow entering common parameters for multiple regions. A group is defined with the <group> opcode, and the parameters enumerated

on it last till the next group opcode, or till the end of the file.

<group>

ampeg_attack=0.04 ampeg_release=0.45

<region> sample=trumpet_pp_c4.wav key=c4

<region> sample=trumpet_pp_c#4.wav key=c#4

<region> sample=trumpet_pp_d4.wav key=d4

<region> sample=trumpet_pp_d#4.wav key=d#4

<group>

<region> sample=trumpet_pp_e4.wav key=e4 // previous group parameters reset

Comments

Comment lines can be inserted anywhere inside the file. A comment line starts with the slash character ('/'), and it extends till the end of the line.

<region>

sample=trumpet_pp_c4.wav

// middle C in the keyboard

lokey=60

// pianissimo layer

lovel=0 hivel=20 // another comment

Where the sample files have to be stored?

Sample files can be stored either in the same folder where the .sfz definition file resides, or in any alternative route, specified relatively to the location

of the definition file. Consequently:

sample=trumpet_pp_c3.wav

sample=samples\trumpet_pp_c3.wav

sample=..\trumpet_pp_c3.wav

Are all valid sample names.

Alternatively, the player might specify one or several 'user folders', where it will search for samples if it doesn't find them in the same folder as the

definition file.

What the sfz format can do?

The sfz format is aimed to allow the arrange of a sample collection in a flexible and expandable way. It's up to the player to decide which functionality

it wants to implement.

Units

All units in the sfz format are in real-world values. Frequencies are expressed in Hertz, pitches in cents, amplitudes in percentage and volumes in decibels.

Notes are expressed in MIDI Note Numbers, or in note names according to the International Pitch Notation (IPN) convention. According to this rules, middle

C in the keyboard is C4 and the MIDI note number 60.

Block quote end

Opcode list

Block quote start

The following is a description of all valid opcodes for the sfz format version 1.0:

Nested Table with 5 columns and 182 rows, nesting level 1

Opcode

Description

Type

Default

Range

Sample Definition

sample

This opcode defines which sample file the region will play.

The value of this opcode is the filename of the sample file, including the extension. The filename must be stored in the same folder where the definition

file is, or specified relatively to it.

If the sample file is not found, the player will ignore the whole region contents.

Long names and names with blank spaces and other special characters (excepting the = character) are allowed in the sample definition.

The sample will play unchanged when a note equal to the pitch_keycenter opcode value is played. If pitch_keycenter is not defined for the region, sample

will play unchanged on note 60 (middle C).

Examples:

sample=guitar_c4_ff.wav

sample=dog kick.ogg

sample=out of tune trombone (redundant).wav

sample=staccatto_snare.ogg

string

(filename)

n/a

n/a

Input Controls

lochan

hichan

If incoming notes have a MIDI channel between lochan and hichan, the region will play.

Examples:

lochan=1 hichan=5

integer

lochan=1

hichan=16

1 to 16

lokey

hikey

key

If a note equal to or higher than lokey AND equal to or lower than hikey is played, the region will play.

lokey and hikey can be entered in either MIDI note numbers (0 to 127) or in MIDI note names (C-1 to G9)

The key opcode sets lokey, hikey and pitch_keycenter to the same note.

Examples:

lokey=60 // middle C

hikey=63 // middle D#

lokey=c4 // middle C

hikey=d#4 // middle D#

hikey=eb4 // middle Eb (D#)

integer

lokey=0, hikey=127

0 to 127

C-1 to G9

lovel

hivel

If a note with velocity value equal to or higher than lovel AND equal to or lower than hivel is played, the region will play.

integer

lovel=0,

hivel=127

0 to 127

loccN

hiccN

Defines the range of the last MIDI controller N required for the region to play.

Examples:

locc74=30 hicc74=100

The region will play only if last MIDI controller 74 received was in the 30~100 range.

integer

locc=0, hicc=127

for all controllers

0 to 127

lobend

hibend

Defines the range of the last Pitch Bend message required for the region to play.

Examples:

lobend=0 hibend=4000

The region will play only if last Pitch Bend message received was in the 0~4000 range.

integer

lobend=-8192, hibend=8192

-8192 to 8192

lochanaft

hichanaft

Defines the range of last Channel Aftertouch message required for the region to play.

Examples:

lochanaft=30 hichanaft=100

The region will play only if last Channel Aftertouch message received was in the 30~100 range.

integer

lochanaft=0, hichanaft=127

0 to 127

lopolyaft

hipolyaft

Defines the range of last Polyphonic Aftertouch message required for the region to play.

The incoming note information in the Polyphonic Aftertouch message is not relevant.

Examples:

lopolyaft=30 hipolyaft=100

The region will play only if last Polyphonic Aftertouch message received was in the 30~100 range.

integer

lopolyaft=0, hipolyaft=127

0 to 127

lorand

hirand

Random values. The player will generate a new random number on every note-on event, in the range 0~1.

The region will play if the random number is equal to or higher than lorand, and lower than hirand.

Examples:

lorand=0.2 hirand=0.4

lorand=0.4 hirand=1

floating point

lorand = 0

hirand = 1

0 to 1

lobpm

hibpm

Host tempo value. The region will play if the host tempo is equal to or higher than lobpm, and lower than hibpm.

Examples:

lobpm=0 hibpm=100

lobpm=100 hibpm=200.5

floating point

lobpm = 0

hibpm = 500

0 to 500 bpm

seq_length

Sequence length. The player will keep an internal counter creating a consecutive note-on sequence for each region, starting at 1 and resetting at seq_length.

Examples:

seq_length=3

integer

1

1 to 100

seq_position

Sequence position. The region will play if the internal sequence counter is equal to seq_position.

Examples:

seq_length=4 seq_position=2

In above example, the region will play on the second note every four notes.

integer

1

1 to 100

sw_lokey

sw_hikey

Defines the range of the keyboard to be used as trigger selectors for the sw_last opcode.

sw_lokey and sw_hikey can be entered in either MIDI note numbers (0 to 127) or in MIDI note names (C-1 to G9)

Examples:

sw_lokey=48 sw_hikey=53

integer

sw_lokey=0, sw_hikey=127

0 to 127

C-1 to G9

sw_last

Enables the region to play if the last key pressed in the range specified by sw_lokey and sw_hikey is equal to the sw_last value.

sw_last can be entered in either MIDI note numbers (0 to 127) or in MIDI note names (C-1 to G9)

Examples:

sw_last=49

integer

0

0 to 127

C-1 to G9

sw_down

Enables the region to play if the key equal to sw_down value is depressed.

Key has to be in the range specified by sw_lokey and sw_hikey.

sw_down can be entered in either MIDI note numbers (0 to 127) or in MIDI note names (C-1 to G9)

Examples:

sw_down=Cb3

integer

0

0 to 127

C-1 to G9

sw_up

Enables the region to play if the key equal to sw_up value is not depressed.

Key has to be in the range specified by sw_lokey and sw_hikey.

sw_up can be entered in either MIDI note numbers (0 to 127) or in MIDI note names (C-1 to G9)

Examples:

sw_up=49

integer

0

0 to 127

C-1 to G9

sw_previous

Previous note value. The region will play if last note-on message was equal to sw_previous value.

sw_previous can be entered in either MIDI note numbers (0 to 127) or in MIDI note names (C-1 to G9)

Examples:

sw_previous=60

integer

none

0 to 127

C-1 to G9

sw_vel

This opcode allows overriding the velocity for the region with the velocity of the previous note. Values can be:

current: Region uses the velocity of current note.

previous: Region uses the velocity of the previous note.

Examples:

sw_vel=previous

text

current

current, previous

trigger

Sets the trigger which will be used for the sample to play. Values can be:

attack (default): Region will play on note-on.

release: Region will play on note-off. The velocity used to play the note-off sample is the velocity value of the corresponding (previous) note-on message.

first: Region will play on note-on, but if there's no other note going on (staccato, or first note in a legato phrase).

legato: Region will play on note-on, but only if there's a note going on (notes after first note in a legato phrase).

Examples:

trigger=release

integer

attack

attack,

release, first, legato

group

Exclusive group number for this region.

Examples:

group=3

group=334

integer

0

0 to 4Gb (4294967296)

off_by

Region off group. When a new region with a group number equal to off_by plays, this region will be turned off.

Examples:

off_by=3

off_by=334

integer

0

0 to 4Gb (4294967296)

off_mode

Region off mode. This opcode will determinate how a region is turned off by an off_by opcode. Values can be:

fast (default): The voice will be turned off immediately. Release settings will not have any effect.

normal: The region will be set into release stage. All envelope generators will enter in release stage, and region will expire when the amplifier envelope

generator expired.

Examples:

off_mode=fast

off_mode=normal

text

fast

fast, normal

on_loccN

on_hiccN

Sample trigger on MIDI continuous control N. If a MIDI control message with a value between on_loccN and on_hiccN is received, the region will play.

Examples:

on_locc1=0 on_hicc1=0

Region will play when a MIDI CC1 (modulation wheel) message with zero value is received.

integer

-1 (unassigned)

0 to 127

Performance Parameters

Sample Player

delay

Region delay time, in seconds.

If a delay value is specified, the region playback will be postponed for the specified time.

If the region receives a note-off message before delay time, the region won't play.

All envelope generators delay stage will start counting after region delay time.

Examples:

delay=1

delay=0.2

floating point

0

0 to 100 seconds

delay_random

Region random delay time, in seconds.

If the region receives a note-off message before delay time, the region won't play.

Examples:

delay_random=1

delay_random=0.2

floating point

0

0 to 100 seconds

delay_ccN

Region delay time after MIDI continuous controller N messages are received, in seconds.

If the region receives a note-off message before delay time, the region won't play.

Examples:

delay_cc1=1

delay_cc2=.5

floating point

0

0 to 100 seconds

offset

The offset used to play the sample, in sample units.

The player will reproduce samples starting with the very first sample in the file, unless offset is specified. It will start playing the file at the offset

sample in this case.

Examples:

offset=3000

offset=32425

integer

0

0 to 4 Gb (4294967296)

offset_random

Random offset added to the region offset, in sample units.

Examples:

offset_random=300

offset_random=100

integer

0

0 to 4 Gb (4294967296)

offset_ccN

The offset used to play the sample according to last position of MIDI continuous controller N, in sample units.

This opcode is useful to specify an alternate sample start point based on MIDI controllers.

Examples:

offset_cc1=3000

offset_cc64=1388

integer

0

0 to 4 Gb (4294967296)

end

The endpoint of the sample, in sample units.

The player will reproduce the whole sample if end is not specified.

If end value is -1, the sample will not play. Marking a region end with -1 can be used to use a silent region to turn off other regions by using the group

and off_by opcodes.

Examples:

end=133000

end=4432425

integer

0

-1 to 4 Gb (4294967296)

count

The number of times the sample will be played. If this opcode is specified, the sample will restart as many times as defined. Envelope generators will not

be retriggered on sample restart.

When this opcode is defined, loopmode is automatically set to one_shot.

Examples:

count=3

count=2

integer

0

0 to 4 Gb (4294967296)

loop_mode

If loop_mode is not specified, each sample will play according to its predefined loop mode. That is, the player will play the sample looped using the first

defined loop, if available. If no loops are defined, the wave will play unlooped.

The loop_mode opcode allows playing samples with loops defined in the unlooped mode. The possible values are:

no_loop: no looping will be performed. Sample will play straight from start to end, or until note off, whatever reaches first.

one_shot: sample will play from start to end, ignoring note off.

This mode is engaged automatically if the count opcode is defined.

loop_continuous: once the player reaches sample loop point, the loop will play until note expiration.

loop_sustain: the player will play the loop while the note is held, by keeping it depressed or by using the sustain pedal (CC64). The rest of the sample

will play after note release.

Examples:

loop_mode=no_loop

loop_mode=loop_continuous

text

no_loop for samples without a loop defined,

loop_continuous for samples with defined loop(s).

n/a

loop_start

The loop start point, in samples.

If loop_start is not specified and the sample has a loop defined, the sample start point will be used.

If loop_start is specified, it will overwrite the loop start point defined in the sample.

This opcode will not have any effect if loopmode is set to no_loop.

Examples:

loop_start=4503

loop_start=12445

integer

0

0 to 4 Gb (4294967296)

loop_end

The loop end point, in samples. This opcode will not have any effect if loopmode is set to no_loop.

If loop_end is not specified and the sample have a loop defined, the sample loop end point will be used.

If loop_end is specified, it will overwrite the loop end point defined in the sample.

Examples:

loop_end=34503

loop_end=212445

integer

0

0 to 4 Gb (4294967296)

sync_beats

Region playing synchronization to host position.

When sync_beats is specified and after input controls instruct the region to play, the playback will be postponed until the next multiple of the specified

value is crossed.

Examples:

sync_beats=4

In this example, if note is pressed in beat 2 of current track, note won't be played until beat 4 reaches.

This opcode will only work in hosts featuring song position information (vstTimeInfo ppqPos).

floating point

0

0 to 32 beats

sync_offset

Region playing synchronization to host position offset.

When sync_beats is specified and after input controls instruct the region to play, the playback will be postponed until the next multiple of the specified

value plus the sync_offset value is crossed.

Examples:

sync_beats=4 sync_offset=1

In this example, if note is pressed in beat 2 of current track, note won't be played until beat 5 reaches.

This opcode will only work in hosts featuring song position information (vstTimeInfo ppqPos).

floating point

0

0 to 32 beats

Pitch

transpose

The transposition value for this region which will be applied to the sample.

Examples:

transpose=3

transpose=-4

integer

0

-127 to 127

tune

The fine tuning for the sample, in cents. Range is ±1 semitone, from -100 to 100. Only negative values must be prefixed with sign.

Examples:

tune=33

tune=-30

tune=94

integer

0

-100 to 100

pitch_keycenter

Root key for the sample.

Examples:

pitch_keycenter=56

pitch_keycenter=c#2

integer

60 (C4)

-127 to 127

C-1 to G9

pitch_keytrack

Within the region, this value defines how much the pitch changes with every note. Default value is 100, which means pitch will change one hundred cents

(one semitone) per played note.

Setting this value to zero means that all notes in the region will play the same pitch, particularly useful when mapping drum sounds.

Examples:

pitch_keytrack=20

pitch_keytrack=0

integer

100

-1200 to 1200

pitch_veltrack

Pitch velocity tracking, represents how much the pitch changes with incoming note velocity, in cents.

Examples:

pitch_veltrack=0

pitch_veltrack=1200

integer

0

-9600 to 9600 cents

pitch_random

Random tuning for the region, in cents. Random pitch will be centered, with positive and negative values.

Examples:

pitch_random=100

pitch_random=400

integer

0

0 to 9600 cents

bend_up

Pitch bend range when Bend Wheel or Joystick is moved up, in cents.

Examples:

bend_up=1200

bend_up=100

integer

200

-9600 to 9600

bend_down

Pitch bend range when Bend Wheel or Joystick is moved down, in cents.

Examples:

bend_down=1200

bend_down=100

integer

-200

-9600 to 9600

bend_step

Pitch bend step, in cents.

Examples:

bend_step=100 // glissando in semitones

bend_step=200 // glissando in whole tones

integer

1

1 to 1200

Pitch EG

pitcheg_delay

Pitch EG delay time, in seconds. This is the time elapsed from note on to the start of the Attack stage.

Examples:

pitcheg_delay=1.5

pitcheg_delay=0

floating point

0 seconds

0 to 100 seconds

pitcheg_start

Pitch EG start level, in percentage.

Examples:

pitcheg_start=20

pitcheg_start=100

floating point

0 %

0 to 100 %

pitcheg_attack

Pitch EG attack time, in seconds.

Examples:

pitcheg_attack=1.2

pitcheg_attack=0.1

floating point

0 seconds

0 to 100 seconds

pitcheg_hold

Pitch EG hold time, in seconds. During the hold stage, EG output will remain at its maximum value.

Examples:

pitcheg_hold=1.5

pitcheg_hold=0.1

floating point

0 seconds

0 to 100 seconds

pitcheg_decay

Pitch EG decay time, in seconds.

Examples:

pitcheg_decay=1.5

pitcheg_decay=3

floating point

0 seconds

0 to 100 seconds

pitcheg_sustain

Pitch EG sustain level, in percentage.

Examples:

pitcheg_sustain=40.34

pitcheg_sustain=10

floating point

100 %

0 to 100 %

pitcheg_release

Pitch EG release time (after note release), in seconds.

Examples:

pitcheg_release=1.34

pitcheg_release=2

floating point

0 seconds

0 to 100 seconds

pitcheg_depth

Depth for the pitch EG, in cents.

Examples:

pitcheg_depth=1200

pitcheg_depth=-100

integer

0

-12000 to 12000

pitcheg_vel2delay

Velocity effect on pitch EG delay time, in seconds.

Examples:

pitcheg_vel2delay=1.2

pitcheg_vel2delay=0.1

Delay time will be calculated as

delay time = pitcheg_delay + pitcheg_vel2delay * velocity / 127

floating point

0 seconds

-100 to 100 seconds

pitcheg_vel2attack

Velocity effect on pitch EG attack time, in seconds.

Examples:

pitcheg_vel2attack=1.2

pitcheg_vel2attack=0.1

Attack time will be calculated as

attack time = pitcheg_attack + pitcheg_vel2attack * velocity / 127

floating point

0 seconds

-100 to 100 seconds

pitcheg_vel2hold

Velocity effect on pitch EG hold time, in seconds.

Examples:

pitcheg_vel2hold=1.2

pitcheg_vel2hold=0.1

Hold time will be calculated as

hold time = pitcheg_hold + pitcheg_vel2hold * velocity / 127

floating point

0 seconds

-100 to 100 seconds

pitcheg_vel2decay

Velocity effect on pitch EG decay time, in seconds.

Examples:

pitcheg_vel2decay=1.2

pitcheg_vel2decay=0.1

Decay time will be calculated as

decay time = pitcheg_decay + pitcheg_vel2decay * velocity / 127

floating point

0 seconds

-100 to 100 seconds

pitcheg_vel2sustain

Velocity effect on pitch EG sustain level, in percentage.

Examples:

pitcheg_vel2sustain=30

pitcheg_vel2sustain=20

Sustain level will be calculated as

sustain level = pitcheg_sustain + pitcheg_vel2sustain

floating point

0 %

-100 % to 100 %

pitcheg_vel2release

Velocity effect on pitch EG release time, in seconds.

Examples:

pitcheg_vel2release=1.2

pitcheg_vel2release=0.1

Release time will be calculated as

release time = pitcheg_release + pitcheg_vel2release * velocity / 127

floating point

0 seconds

-100 to 100 seconds

pitcheg_vel2depth

Velocity effect on pitch EG depth, in cents.

Examples:

pitcheg_vel2depth=100

pitcheg_vel2depth=-1200

integer

0 cents

-12000 to 12000 cents

Pitch LFO

pitchlfo_delay

The time before the Pitch LFO starts oscillating, in seconds.

Examples:

pitchlfo_delay=1

pitchlfo_delay=0.4

floating point

0 seconds

0 to 100 seconds

pitchlfo_fade

Pitch LFO fade-in effect time.

Examples:

pitchlfo_fade=1

pitchlfo_fade=0.4

floating point

0 seconds

0 to 100 seconds

pitchlfo_freq

Pitch LFO frequency, in hertz.

Examples:

pitchlfo_freq=0.4

pitchlfo_freq=1.3

floating point

0 Hertz

0 to 20 hertz

pitchlfo_depth

Pitch LFO depth, in cents.

Examples:

pitchlfo_depth=1

pitchlfo_depth=4

integer

0 cent

-1200 to 1200 cents

pitchlfo_depthccN

Pitch LFO depth when MIDI continuous controller N is received, in cents.

Examples:

pitchlfo_depthcc1=100

pitchlfo_depthcc32=400

integer

0 cent

-1200 to 1200 cents

pitchlfo_depthchanaft

Pitch LFO depth when channel aftertouch MIDI messages are received, in cents.

Examples:

pitchlfo_depthchanaft=100

pitchlfo_depthchanaft=400

integer

0 cent

-1200 to 1200 cents

pitchlfo_depthpolyaft

Pitch LFO depth when polyphonic aftertouch MIDI messages are received, in cents.

Examples:

pitchlfo_depthpolyaft=100

pitchlfo_depthpolyaft=400

integer

0 cent

-1200 to 1200 cents

pitchlfo_freqccN

Pitch LFO frequency change when MIDI continuous controller N is received, in hertz.

Examples:

pitchlfo_freqcc1=5

pitchlfo_freqcc1=-12

floating point

0 hertz

-200 to 200 hertz

pitchlfo_freqchanaft

Pitch LFO frequency change when channel aftertouch MIDI messages are received, in hertz.

Examples:

pitchlfo_freqchanaft=10

pitchlfo_freqchanaft=-40

floating point

0 hertz

-200 to 200 hertz

pitchlfo_freqpolyaft

Pitch LFO frequency change when polyphonic aftertouch MIDI messages are received, in hertz.

Examples:

pitchlfo_freqpolyaft=10

pitchlfo_freqpolyaft=-4

floating point

0 hertz

-200 to 200 hertz

Filter

fil_type

Filter type. Avaliable types are:

lpf_1p: one-pole low pass filter (6dB/octave).

hpf_1p: one-pole high pass filter (6dB/octave).

lpf_2p: two-pole low pass filter (12dB/octave).

hpf_2p: two-pole high pass filter (12dB/octave).

bpf_2p: two-pole band pass filter (12dB/octave).

brf_2p: two-pole band rejection filter (12dB/octave).

Examples:

fil_type=lpf_2p

fil_type=hpf_1p

text

lpf_2p

lpf_1p, hpf_1p, lpf_2p, hpf_2p, bpf_2p, brf_2p

cutoff

The filter cutoff frequency, in Hertz.

If the cutoff is not specified, the filter will be disabled, with the consequent CPU drop in the player.

Examples:

cutoff=343

cutoff=4333

floating point

filter disabled

0 to

SampleRate / 2

cutoff_ccN

The variation in the cutoff frequency when MIDI continuous controller N is received, in cents.

Examples:

cutoff_cc1=1200

cutoff_cc2=-100

integer

0

-9600 to 9600 cents

cutoff_chanaft

The variation in the cutoff frequency when MIDI channel aftertouch messages are received, in cents.

Examples:

cutoff_chanaft=1200

cutoff_chanaft=-100

integer

0

-9600 to 9600 cents

cutoff_polyaft

The variation in the cutoff frequency when MIDI polyphonic aftertouch messages are received, in cents.

Examples:

cutoff_polyaft=1200

cutoff_polyaft=-100

integer

0

-9600 to 9600 cents

resonance

The filter cutoff resonance value, in decibels.

Examples:

resonance=30

floating point

0 dB

0 to 40 dB

fil_keytrack

Filter keyboard tracking (change on cutoff for each key) in cents.

Examples:

fil_keytrack=100

fil_keytrack=0

integer

0 cents

0 to 1200 cents

fil_keycenter

Center key for filter keyboard tracking. In this key, the filter keyboard tracking will have no effect.

Examples:

fil_keycenter=60

fil_keycenter=48

integer

60

0 to 127

fil_veltrack

Filter velocity tracking, represents how much the cutoff changes with incoming note velocity.

Examples:

fil_veltrack=0

fil_veltrack=1200

integer

0

-9600 to 9600 cents

fil_random

Random cutoff added to the region, in cents.

Examples:

fil_random=100

fil_random=400

integer

0

0 to 9600 cents

Filter EG

fileg_delay

Filter EG delay time, in seconds. This is the time elapsed from note on to the start of the Attack stage.

Examples:

fileg_delay=1.5

fileg_delay=0

floating point

0 seconds

0 to 100 seconds

fileg_start

Filter EG start level, in percentage.

Examples:

fileg_start=20

fileg_start=100

floating point

0 %

0 to 100 %

fileg_attack

Filter EG attack time, in seconds.

Examples:

fileg_attack=1.2

fileg_attack=0.1

floating point

0 seconds

0 to 100 seconds

fileg_hold

Filter EG hold time, in seconds. During the hold stage, EG output will remain at its maximum value.

Examples:

fileg_hold=1.5

fileg_hold=0.1

floating point

0 seconds

0 to 100 seconds

fileg_decay

Filter EG decay time, in seconds.

Examples:

fileg_decay=1.5

fileg_decay=3

floating point

0 seconds

0 to 100 seconds

fileg_sustain

Filter EG sustain level, in percentage.

Examples:

fileg_sustain=40.34

fileg_sustain=10

floating point

100 %

0 to 100 %

fileg_release

Filter EG release time (after note release), in seconds.

Examples:

fileg_release=1.34

fileg_release=2

floating point

0 seconds

0 to 100 seconds

fileg_depth

Depth for the filter EG, in cents.

Examples:

fileg_depth=1200

fileg_depth=-100

integer

0

-12000 to 12000

fileg_vel2delay

Velocity effect on filter EG delay time, in seconds.

Examples:

fileg_vel2delay=1.2

fileg_vel2delay=0.1

Delay time will be calculated as

delay time = fileg_delay + fileg_vel2delay * velocity / 127

floating point

0 seconds

-100 to 100 seconds

fileg_vel2attack

Velocity effect on filter EG attack time, in seconds.

Examples:

fil_vel2attack=1.2

fil_vel2attack=0.1

Attack time will be calculated as

attack time = fileg_attack + fileg_vel2attack * velocity / 127

floating point

0 seconds

-100 to 100 seconds

fileg_vel2hold

Velocity effect on filter EG hold time, in seconds.

Examples:

fileg_vel2hold=1.2

fileg_vel2hold=0.1

Hold time will be calculated as

hold time = fileg_hold + fileg_vel2hold * velocity / 127

floating point

0 seconds

-100 to 100 seconds

fileg_vel2decay

Velocity effect on filter EG decay time, in seconds.

Examples:

fileg_vel2decay=1.2

fileg_vel2decay=0.1

Decay time will be calculated as

decay time = fileg_decay + fileg_vel2decay * velocity / 127

floating point

0 seconds

-100 to 100 seconds

fileg_vel2sustain

Velocity effect on filter EG sustain level, in percentage.

Examples:

fileg_vel2sustain=30

fileg_vel2sustain=-30

Sustain level will be calculated as

sustain level = fileg_sustain + fileg_vel2sustain

Result will be clipped to 0~100%.

floating point

0 %

-100 % to 100 %

fileg_vel2release

Velocity effect on filter EG release time, in seconds.

Examples:

fileg_vel2release=1.2

fileg_vel2release=0.1

Release time will be calculated as

release time = fileg_release + fileg_vel2release * velocity / 127

floating point

0 seconds

-100 to 100 seconds

fileg_vel2depth

Velocity effect on filter EG depth, in cents.

Examples:

fileg_vel2depth=100

fileg_vel2depth=-1200

integer

0 cents

-12000 to 12000 cents

Filter LFO

fillfo_delay

The time before the filter LFO starts oscillating, in seconds.

Examples:

fillfo_delay=1

fillfo_delay=0.4

floating point

0 seconds

0 to 100 seconds

fillfo_fade

Filter LFO fade-in effect time.

Examples:

fillfo_fade=1

fillfo_fade=0.4

floating point

0 seconds

0 to 100 seconds

fillfo_freq

Filter LFO frequency, in hertz.

Examples:

fillfo_freq=0.4

fillfo_freq=1.3

floating point

0 Hertz

0 to 20 hertz

fillfo_depth

Filter LFO depth, in cents.

Examples:

fillfo_depth=1

fillfo_depth=4

floating point

0 dB

-1200 to 1200 cents

fillfo_depthccN

Filter LFO depth when MIDI continuous controller N is received, in cents.

Examples:

fillfo_depthcc1=100

fillfo_depthcc32=400

integer

0 cent

-1200 to 1200 cents

fillfo_depthchanaft

Filter LFO depth when channel aftertouch MIDI messages are received, in cents.

Examples:

fillfo_depthchanaft=100

fillfo_depthchanaft=400

integer

0 cent

-1200 to 1200 cents

fillfo_depthpolyaft

Filter LFO depth when polyphonic aftertouch MIDI messages are received, in cents.

Examples:

fillfo_depthpolyaft=100

fillfo_depthpolyaft=400

integer

0 cent

-1200 to 1200 cents

fillfo_freqccN

Filter LFO frequency change when MIDI continuous controller N is received, in hertz.

Examples:

fillfo_freqcc1=5

fillfo_freqcc1=-12

floating point

0 hertz

-200 to 200 hertz

fillfo_freqchanaft

Filter LFO frequency change when channel aftertouch MIDI messages are received, in hertz.

Examples:

fillfo_freqchanaft=10

fillfo_freqchanaft=-40

floating point

0 hertz

-200 to 200 hertz

fillfo_freqpolyaft

Filter LFO frequency change when polyphonic aftertouch MIDI messages are received, in hertz.

Examples:

fillfo_freqpolyaft=10

fillfo_freqpolyaft=-4

floating point

0 hertz

-200 to 200 hertz

Amplifier

volume

The volume for the region, in decibels.

Examples:

volume=-24

volume=0

volume=3.5

floating point

0.0

-144 to 6 dB

pan

The panoramic position for the region.

If a mono sample is used, pan value defines the position in the stereo image where the sample will be placed.

When a stereo sample is used, the pan value the relative amplitude of one channel respect the other.

A value of zero means centered, negative values move the panoramic to the left, positive to the right.

Examples:

pan=-30.5

pan=0

pan=43

floating point

0.0

-100 to 100

width

Only operational for stereo samples, width defines the amount of channel mixing applied to play the sample.

A width value of 0 makes a stereo sample play as if it were mono (adding both channels and compensating for the resulting volume change). A value of 100

will make the stereo sample play as original.

Any value in between will mix left and right channels with a part of the other, resulting in a narrower stereo field image.

Negative width values will reverse left and right channels.

Examples:

width=100 // stereo

width=0 // play this stereo sample as mono

width=50 // mix 50% of one channel with the other

floating point

0.0

-100 to 100 %

position

Only operational for stereo samples, position defines the position in the stereo field of a stereo signal, after channel mixing as defined in the width

opcode.

A value of zero means centered, negative values move the panoramic to the left, positive to the right.

Examples:

// mix both channels and play the result at left

width=0 position=-100

// make the stereo image narrower and play it

// slightly right

width=50 position=30

floating point

0.0

-100 to 100 %

amp_keytrack

Amplifier keyboard tracking (change in amplitude per key) in dB.

Examples:

amp_keytrack=-1.4

amp_keytrack=3

floating point

0 dB

-96 to 12 dB

amp_keycenter

Center key for amplifier keyboard tracking. In this key, the amplifier keyboard tracking will have no effect.

Examples:

amp_keycenter=60

amp_keycenter=48

integer

60

0 to 127

amp_veltrack

Amplifier velocity tracking, represents how much the amplitude changes with incoming note velocity.

Volume changes with incoming velocity in a concave shape according to the following expression:

Amplitude(dB) = 20 log (127^2 / Velocity^2)

The amp_velcurve_N opcodes allow overriding the default velocity curve.

Examples:

amp_veltrack=0

amp_veltrack=100

floating point

100 %

-100 to 100 %

amp_velcurve_1

amp_velcurve_127

User-defined amplifier velocity curve. This opcode range allows defining a specific curve for the amplifier velocity. The value of the opcode indicates

the normalized amplitude (0 to 1) for the specified velocity.

The player will interpolate lineraly between specified opcodes for unspecified ones:

amp_velcurve_1=0.2 amp_velcurve_3=0.3

// amp_velcurve_2 is calculated to 0.25

If amp_velcurve_127 is not specified, the player will assign it the value of 1.

Examples:

// linear, compressed dynamic range

// amplitude changes from 0.5 to 1

amp_velcurve_1=0.5

floating point

standard curve (see amp_veltrack)

0 to 1

amp_random

Random volume for the region, in decibels.

Examples:

amp_random=10

amp_random=3

floating point

0

0 to 24 dB

rt_decay

The volume decay amount when the region is set to play in release trigger mode, in decibels per second since note-on message.

Examples:

rt_decay=6.5

floating point

0 dB

0 to 200 dB

output

The stereo output number for this region.

If the player doesn't feature multiple outputs, this opcode is ignored.

Examples:

output=0

output=4

integer

0

0 to 1024

gain_ccN

Gain applied on MIDI control N, in decibels.

Examples:

gain_cc1=12

floating point

0

-144 to 48 dB

xfin_lokey

xfin_hikey

Fade in control.

xfin_lokey and xfin_hikey define the fade-in keyboard zone for the region.

The volume of the region will be zero for keys lower than or equal to xfin_lokey, and maximum (as defined by the volume opcode) for keys greater than or

equal to xfin_hikey.

Examples:

xfin_lokey=c3 xfin_hikey=c4

integer

xfin_lokey=0

xfin_hikey=0

0 to 127

C-1 to G9

xfout_lokey

xfout_hikey

Fade out control.

xfout_lokey and xfout_hikey define the fade-out keyboard zone for the region.

The volume of the region will be maximum (as defined by the volume opcode) for keys lower than or equal to xfout_lokey, and zero for keys greater than or

equal to xfout_hikey.

Examples:

xfout_lokey=c5 xfout_hikey=c6

integer

xfout_lokey=127

xfout_hikey=127

0 to 127

C-1 to G9

xf_keycurve

Keyboard crossfade curve for the region. Values can be:

gain: Linear gain crossfade. This setting is best when crossfading phase-aligned material. Linear gain crossfades keep constant amplitude during the crossfade,

preventing clipping.

power: Equal-power RMS crossfade. This setting works better to mix very different material, as a constant power level is kept during the crossfade.

text

power

gain, power

xfin_lovel

xfin_hivel

Fade in control.

xfin_lovel and xfin_hivel define the fade-in velocity range for the region.

The volume of the region will be zero for velocities lower than or equal to xfin_lovel, and maximum (as defined by the volume opcode) for velocities greater

than or equal to xfin_hivel.

Examples:

xfin_lovel=0 xfin_hivel=127

integer

xfin_lovel=0

xfin_hivel=0

0 to 127

xfout_lovel

xfout_hivel

Fade out control.

xfout_lokey and xfout_hikey define the fade-out velocity range for the region.

The volume of the region will be maximum (as defined by the volume opcode) for velocities lower than or equal to xfout_lovel, and zero for velocities greater

than or equal to xfout_hivel.

Examples:

xfout_lovel=0 xfout_hivel=127

integer

xfout_lokey=127

xfout_hikey=127

0 to 127

xf_velcurve

Velocity crossfade curve for the region. Values can be:

gain: Linear gain crossfade. This setting is best when crossfading phase-aligned material. Linear gain crossfades keep constant amplitude during the crossfade,

preventing clipping.

power: Equal-power RMS crossfade. This setting works better to mix very different material, as a constant power level is kept during the crossfade.

text

power

gain, power

xfin_loccN

xfin_hiccN

Fade in control.

xfin_loccN and xfin_hiccN set the range of values in the MIDI continuous controller N which will perform a fade-in in the region.

The volume of the region will be zero for values of the MIDI continuous controller N lower than or equal to xfin_loccN, and maximum (as defined by the volume

opcode) for values greater than or equal to xfin_hiccN.

Examples:

xfin_locc1=64 xfin_hicc1=127

integer

0

0 to 127

xfout_loccN

xfout_hiccN

Fade out control.

xfout_loccN and xfout_hiccN set the range of values in the MIDI continuous controller N which will perform a fade-out in the region.

The volume of the region will be maximum (as defined by the volume opcode) for values of the MIDI continuous controller N lower than or equal to xfout_loccN,

and zero for values greater than or equal to xfout_hiccN.

Examples:

xfout_locc1=64 xfout_hicc1=127

integer

0

0 to 127

xf_cccurve

MIDI controllers crossfade curve for the region. Values can be:

gain: Linear gain crossfade. This setting is best when crossfading phase-aligned material. Linear gain crossfades keep constant amplitude during the crossfade,

preventing clipping.

power: Equal-power RMS crossfade. This setting works better to mix very different material, as a constant power level is kept during the crossfade.

text

power

gain, power

Amplifier EG

ampeg_delay

Amplifier EG delay time, in seconds. This is the time elapsed from note on to the start of the Attack stage.

Examples:

ampeg_delay=1.5

ampeg_delay=0

floating point

0 seconds

0 to 100 seconds

ampeg_start

Amplifier EG start level, in percentage.

Examples:

ampeg_start=20

ampeg_start=100

floating point

0 %

0 to 100 %

ampeg_attack

Amplifier EG attack time, in seconds.

Examples:

ampeg_attack=1.2

ampeg_attack=0.1

floating point

0 seconds

0 to 100 seconds

ampeg_hold

Amplifier EG hold time, in seconds. During the hold stage, EG output will remain at its maximum value.

Examples:

ampeg_hold=1.5

ampeg_hold=0.1

floating point

0 seconds

0 to 100 seconds

ampeg_decay

Amplifier EG decay time, in seconds.

Examples:

ampeg_decay=1.5

ampeg_decay=3

floating point

0 seconds

0 to 100 seconds

ampeg_sustain

Amplifier EG sustain level, in percentage.

Examples:

ampeg_sustain=40.34

ampeg_sustain=10

floating point

100 %

0 to 100 %

ampeg_release

Amplifier EG release time (after note release), in seconds.

Examples:

ampeg_release=1.34

ampeg_release=2

floating point

0 seconds

0 to 100 seconds

ampeg_vel2delay

Velocity effect on amplifier EG delay time, in seconds.

Examples:

ampeg_vel2delay=1.2

ampeg_vel2delay=0.1

Delay time will be calculated as

delay time = ampeg_delay + ampeg_vel2delay * velocity / 127

floating point

0 seconds

-100 to 100 seconds

ampeg_vel2attack

Velocity effect on amplifier EG attack time, in seconds.

Examples:

ampeg_vel2attack=1.2

ampeg_vel2attack=0.1

Attack time will be calculated as

attack time = ampeg_attack + ampeg_vel2attack * velocity / 127

floating point

0 seconds

-100 to 100 seconds

ampeg_vel2hold

Velocity effect on amplifier EG hold time, in seconds.

Examples:

ampeg_vel2hold=1.2

ampeg_vel2hold=0.1

Hold time will be calculated as

hold time = ampeg_hold + ampeg_vel2hold * velocity / 127

floating point

0 seconds

-100 to 100 seconds

ampeg_vel2decay

Velocity effect on amplifier EG decay time, in seconds.

Examples:

ampeg_vel2decay=1.2

ampeg_vel2decay=0.1

Decay time will be calculated as

decay time = ampeg_decay + ampeg_vel2decay * velocity / 127

floating point

0 seconds

-100 to 100 seconds

ampeg_vel2sustain

Velocity effect on amplifier EG sustain level, in percentage.

Examples:

ampeg_vel2sustain=30

ampeg_vel2sustain=-30

Sustain level will be calculated as

sustain level= ampeg_sustain + ampeg_vel2sustain

The result will be clipped to 0~100%.

floating point

0%

-100 % to 100 %

ampeg_vel2release

Velocity effect on amplifier EG release time, in seconds.

Examples:

ampeg_vel2release=1.2

ampeg_vel2release=0.1

Release time will be calculated as

release time = ampeg_release + ampeg_vel2release * velocity / 127

floating point

0 seconds

-100 to 100 seconds

ampeg_delayccN

Amplifier EG delay time added on MIDI control N, in seconds.

Examples:

ampeg_delaycc20=1.5

ampeg_delaycc1=0

floating point

0 seconds

-100 to 100 seconds

ampeg_startccN

Amplifier EG start level added on MIDI control N, in percentage.

Examples:

ampeg_startcc20=20

ampeg_startcc1=100

floating point

0 %

-100 to 100 %

ampeg_attackccN

Amplifier EG attack time added on MIDI control N, in seconds.

Examples:

ampeg_attackcc20=1.2

ampeg_attackcc1=0.1

floating point

0 seconds

-100 to 100 seconds

ampeg_holdccN

Amplifier EG hold time added on MIDI control N, in seconds.

Examples:

ampeg_holdcc20=1.5

ampeg_holdcc1=0.1

floating point

0 seconds

-100 to 100 seconds

ampeg_decayccN

Amplifier EG decay time added on MIDI control N, in seconds.

Examples:

ampeg_decaycc20=1.5

ampeg_decaycc1=3

floating point

0 seconds

-100 to 100 seconds

ampeg_sustainccN

Amplifier EG sustain level added on MIDI control N, in percentage.

Examples:

ampeg_sustaincc20=40.34

ampeg_sustaincc1=10

floating point

100 %

-100 to 100 %

ampeg_releaseccN

Amplifier EG release time added on MIDI control N, in seconds.

Examples:

ampeg_releasecc20=1.34

ampeg_releasecc1=2

floating point

0 seconds

-100 to 100 seconds

Amplifier LFO

amplfo_delay

The time before the Amplifier LFO starts oscillating, in seconds.

Examples:

amplfo_delay=1

amplfo_delay=0.4

floating point

0 seconds

0 to 100 seconds

amplfo_fade

Amplifier LFO fade-in effect time.

Examples:

amplfo_fade=1

amplfo_fade=0.4

floating point

0 seconds

0 to 100 seconds

amplfo_freq

Amplifier LFO frequency, in hertz.

Examples:

amplfo_freq=0.4

amplfo_freq=1.3

floating point

0 Hertz

0 to 20 hertz

amplfo_depth

Amplifier LFO depth, in decibels.

Examples:

amplfo_depth=1

amplfo_depth=4

floating point

0 dB

-10 to 10 dB

amplfo_depthccN

Amplifier LFO depth when MIDI continuous controller N is received, in decibels.

Examples:

amplfo_depthcc1=100

amplfo_depthcc32=400

floating point

0 dB

-10 to 10 dB

amplfo_depthchanaft

Amplifier LFO depth when channel aftertouch MIDI messages are received, in cents.

Examples:

amplfo_depthchanaft=100

amplfo_depthchanaft=400

floating point

0 dB

-10 to 10 dB

amplfo_depthpolyaft

Amplifier LFO depth when polyphonic aftertouch MIDI messages are received, in cents.

Examples:

amplfo_depthpolyaft=100

amplfo_depthpolyaft=400

floating point

0 dB

-10 to 10 dB

amplfo_freqccN

Amplifier LFO frequency change when MIDI continuous controller N is received, in hertz.

Examples:

amplfo_freqcc1=5

amplfo_freqcc1=-12

floating point

0 hertz

-200 to 200 hertz

amplfo_freqchanaft

Amplifier LFO frequency change when channel aftertouch MIDI messages are received, in hertz.

Examples:

amplfo_freqchanaft=10

amplfo_freqchanaft=-40

floating point

0 hertz

-200 to 200 hertz

amplfo_freqpolyaft

Amplifier LFO frequency change when polyphonic aftertouch MIDI messages are received, in hertz.

Examples:

amplfo_freqpolyaft=10

amplfo_freqpolyaft=-4

floating point

0 hertz

-200 to 200 hertz

Equalizer

eq1_freq

eq2_freq

eq3_freq

Frequency of the equalizer band, in Hertz.

Examples:

eq1_freq=80 eq2_freq=1000 eq3_freq=4500

floating point

eq1_freq=50

eq2_freq=500

eq3_freq=5000

0 to 30000 Hz

eq1_freqccN

eq2_freqccN

eq3_freqccN

Frequency change of the equalizer band when MIDI continuous control N messages are received, in Hertz.

Examples:

eq1_freqcc1=80

floating point

0

-30000 to 30000 Hz

eq1_vel2freq

eq2_vel2freq

eq3_vel2freq

Frequency change of the equalizer band with MIDI velocity, in Hertz.

Examples:

eq1_vel2freq=1000

floating point

0

-30000 to 30000 Hz

eq1_bw

eq2_bw

eq3_bw

Bandwidth of the equalizer band, in octaves.

Examples:

eq1_bw=1 eq2_bw=0.4 eq3_bw=1.4

floating point

1 octave

0.001 to 4 octaves

eq1_bwccN

eq2_bwccN

eq3_bwccN

Bandwidth change of the equalizer band when MIDI continuous control N messages are received, in octaves.

Examples:

eq1_bwcc29=1.3

floating point

0

-4 to 4 octaves

eq1_gain

eq2_gain

eq3_gain

Gain of the equalizer band, in decibels.

Examples:

eq1_gain=-3 eq2_gain=6 eq3_gain=-6

floating point

0 dB

-96 to 24 dB

eq1_gainccN

eq2_gainccN

eq3_gainccN

Gain change of the equalizer band when MIDI continuous control N messages are received, in decibels.

Examples:

eq1_gaincc23=-12

floating point

0 dB

-96 to 24 dB

eq1_vel2gain

eq2_vel2gain

eq3_vel2gain

Gain change of the equalizer band with MIDI velocity, in decibels.

Examples:

eq1_vel2gain=12

floating point

0

-96 to 24 dB

Effects

effect1

Level of effect1 send, in percentage (reverb in sfz).

Examples:

effect1=100

floating point

0

0 to 100 %

effect2

Level of effect2 send, in percentage (chorus in sfz).

Examples:

effect2=100

floating point

0

0 to 100 %

table end

Block quote end

Examples

Example .sfz definition files showing every opcode functionality can be found at:

http://www.rgcaudio.com/sfzsamples/

 

Copyright © 2004 rgc:audio Software. All rights reserved.

All specifications and prices specified on this web site may be subject to change without notice.

table end

